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ROLE OF RHEOLOGY IN THE EXTENSION OF
POLYMER MELTS BY A CONSTANT FORCE

A. N, Prokunin and N. G. Proskurnina UDC 532.5:532.135

The uniform extension of an elastic liquid by a constant force is experimentally investigated,
and the experiment is compared with theory.

In [1] a system of equations with four rheological constants was written to describe any noninertial uni-
form extension.* These equations were as follows
1 oo D —1)

» e T e S =10,
L= 2'12 A— 1P+ 4h+ 1), (v =48 T = xb), @
'O

o= = (1—38) (A2—A7Y) 4+ 3slexp (L).
n
These equations were derived using the classical potential of the grid theory of high elasticity.

In the extension of a sample by a constant force F, one end is rigidly fixed, and the other moves under
the action of F (a diagram is shown in Fig. 1). In this case, the dimensionless stress is

0 =0, ﬂ. y Og = oF . (2)
p NPo :
The expression for the deformation rate under tension is I" = (1/1) (d1/d7) [3]. Using the incompressibility

conditions for the liquid, pyly = pl, it may be written in the form

1,4 (3)
p dt
Differentiating Eq. (2) with respect to 7 and using Eq. (3), the following result is obtained

r=—

*Surface tension was neglected.
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r= 1. 4 (4)
o

dr
Taking account of Eq. (4), the second relation in Eq. (1) takes the form
— 3__
do __. oexp(—1) (1—9) A1 — | (5)
dt 3s A
1t also follows from Eq. (1) that
dh A+1) A3—1) 1 A1
= —hexp(— L}{———— + — [ (1 — — ; 6
- D[ o [0 B o ) (®)

Thus, in considering extension by a constant force F, it is necessary to solve a system of two equa-
tions — Egs. (5) and (6) — under the condition that » = 1 and ¢ = ¢y when 7 = 0,

Dividing Eq. (5) by Eq. (6), the following result is obtained

A do L [ M—1 [+ h@—1) | 1 N i
— = [(1 s) T a-l{ " + » [(1 5) : —c]} . 7

Investigation of the phase picture for Eq. (7) shows that the solution ¢(A) rises monotonically.

It may be shown that at large ) (at large 7) the solution shrinks to the dependence
g = },2. (8)
Taking into account that ¢()) is monotonic, Eqa. (7) may be written in the form
1
— [(1—s)—o/Aq
LN L +007. (9
s )
— —— (1 — 5)—0olA] : .
57 5 [(1-5)

It follows from the second relation in Eq. (1) that the growth in g()) is no slower than 3%. Suppose that
¢ grows more rapidly than %. It then follows from Eq. (9) that, at large A, (\/¢) (do/dA) ~ 1 and ¢ = Ca,
which contradicts the initial assumption. Thus, with increase in ), all the solutions reduce to a curve ¢ =
CA%. 1t follows from Eq. (9) that C = 1.

Taking account of Eq. (8), it follows from Eq. (6) that at large A

d e A2z
= — >, — . 0
& 6 P ( 2 ) (10)
For the case g = 0
3
C—t ‘ (

Note that  tends to infinity in a finite time in Eq. (11) because a noninertial approximation is considered;
however, in the region of A considered in the comparison with experiment below, dynamic terms are insignifi-
cant, and the asymptote in Eq. (11) is acceptable.

As T (B = 0), A2~ (2/8) In (B7/6) from Eq. (10); at the same time, the motion of the test sample
slows.

In experiments- it is not the elastic deformation A whichis measured, but the "elastic recoil" . The re-
lation between these two quantities [1] is as follows

2 CTavy
0 209
25 235

A= L a= 1L, (12)

It follows from Egs. (1) and (10) that, when A—~w, T - ifg=0and T —0 if 8 =0,
According to [1], the rate of irreversible deformation is
dlna A dee 7
=I— =] 1—-2.22
ki dt [ a dh ] +
de (M- —1)
di 6

+ X exp (— D). a3
¢
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I p=0and A—~, ()a)(da/dr) —2(L —s)/(2 ~s), and ep~ aZs if B = 0 and A —w, ep —~ 0, passing
through a maximum.

Now consider the asymptotic solution for small times 7. Substituting into Eqgs. (5} and (6} expressions
for the total deformation e = [/, the elastic deformation A, and the stress ¢ = gy¢ in the form of power
series in 7, and taking inte account that T = (1/¢)(d e/ d7), it. is found that for any oy

e=A=14+ X 3 0@,
3s

It may also be shown that when 7 < 3s/qgy, where ¢ > max (3/2) {(1 —s), s}, irreversible flow is slight,
i.e., £ ¥A. If B <1 (for the given polymer g ~ 107%)

dd 1 dx

; 0=0h =235 — -

ro 1.
A dv A dr

) 3s ' :
The expression for ¢ in Eq. (14) is the same as the solution of the problem on the extension of a New-
tonian liquid (F = const) of viscosity ns, but in the given case the deformation is almost entirely elastic {(ina
Newtonian liquid x= 1). :

By matching the asymptotic solutions obtained at large and small 7, the constant C in Eq. (11) may be
determined. At the point of intersection of the two solutions, that is, ¢ = gyA and ¢ = A? (for the case g =< 1072,
the solution for g = 0 may be considered in the matching region), A = oy. The time 74 at the matching point
may then be determined from Eq. (14) :

1:*»:33—(1—_1-). (15)
Og Gy ;
Then, substituting A = ¢y into Eq. (11) when 7 = 1,, the following result is obtained
3
C=7T+ — (16)

Note that in addition to the asymptotic solution of Egs. (5) and (6), they were also solved numerically by
the Runge —Kutta method on a computer. When the appropriate constraints were observed, the results obtained
by the two methods did not greatly differ. The results of the numerical calculation are given below in the com-
parison with experimental data.

The experiments were carried out, as in [1], at 22°C with a melt of P-20 polyisobutylene of molecular
mass ~10, :
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A diagram of the apparatus used for extension by 2 constant force and for experiments on the stress re-
laxation of cylindrical samples is shown in Fig. 1. The left-hand end of the sample 1 was fixed by means of
the clamp (bush) 2 to the external plate of the capacitative sensor 3 [4]. The right~hand end was fixed by
means of another bush 4 to the float 5 on the surface of the water. The water was used {o compensate the
weight of the sample and to provide thermostatic conditions, A thread 6 was attached to the float, and passed
through the pulley 7; the load 8 was attached to its other end. Note that this extension system might lead to
self~oscillation at high levels of sample extension (especially when the pulley is replaced by a cylinder over
which the thread slides). Therefore, in conditions where this might occur (when the sample weight is much
less than the load weight}, the experiments were duplicated for vertical extension with no pulley.

For the measurement of stress relaxation, an obstruction was placed at the required distance; the ob-
struction took the form of a Y piece in which the float lodged in the course of its motion, relaxation beginning
thereafter. The sample length remained unchanged in these conditions. In stress relaxation {in ideal relaxa~
tion the sample is motionless), the sample may move in the case in which nonuniformities have formed in the
course of extension, and this sometimes leads to destruction of the sample. This is evidently because the non-
uniformities produce in the sample points of different stress, whose relaxation over time is different.

The uniformity of the samples was partially monitored by taking photographs at a fixed point of the test
sample (far from the clamp).

The elastic deformation o = /I, was also measured; [, is the length to which a segment of the extended
sample of length [ tends after the stress is removed. To measure ¢, a sufficiently uniform part of the sample
was cut out using shears, after which the cut sample was reduced in the melt for ~1 h {3].

In the experiments, measurements were made of the tensile force F, the total deformation ¢ =1/1, (the
length I was fixed visually as the melt moved along a scale), and the elastic recoil o,

The scatterofthe experimental data for ¢ < 10 was nomore than +109, but increased dramatically for
measurements of ¢ in the region where it is rapidly riging (see Fig. 1). The points in the figures give the ex-
perimental results and the curves the theoretical dependence. For the sake of subsequent comparison with
theoretical results, the experimental data are given in dimensionless form.

The dependence of the total deformation & =1/l and the elastic recoil @ on the time 7 =1/6 (§ = 2+
102 sec) is shown in Fig, 1 for different initial stresses ¢, = F§/npy (py is the cross-sectional area before
deformation). In the range of & investigated, these dependences rise monotonically; the rise is more rapid for
larger oyq.

The dependence of the dimensional siress ¢' on the elastic recoil o is shown in Fig. 2, The open sym-
bols in Fig. 2a correspond to results for ¢'(a) obtained for extension by different forces (initial stresses
o§). These dependences are plotted from the experimental results given in Fig. 1. It is evident from Fig. 2
that the experimental dependences ¢'(«) converge with increase in . Comparison of results for ¢'(x) ob-
tained in conditions of constant force (¥Fig. 2a) and constant deformation rate [1] shows that at the points of in-
tersection the deformation rates are approximately the same.
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different dependences ep(a).

Fig. 4. Theoretical dependence of the total deformation
¢ (1), elastic deformation ) (2), and elastic recoil « (3)
on the time r. The continuous curves are for g = 0 and
the dashed curves for 1.72-1073,

The filled symbols in Fig. 2a show the dependence ¢'(«) (the envelope) obtained for stress relaxation.
This dependence was obtained as follows. In conditions of stress relaxation (preceded by extension of the sam~
ple), measurements were made not only of the stress as a function of time ¢'(t) but also of the elastic recoil
. The sample was unloaded at different times t in the course of stress relaxation, and the elastic recoil «
was measured; the dependence o(t) was then constructed. Using the dependences ¢'(t) and a(t) in stress
relaxation (not given in the present work), the relaxational dependences ¢'(a) shown by the points in Fig. 2b
were obtained. The points from which the relaxation process began are shown by arrows in Fig. 2b. As is
evident from Fig. 2b, the relaxation dependences lie along a single curve, if relaxation begins from points ly-
ing on this curve (see points 2, 4, 7, and 8, for example). It does not matter in what conditions the points from
which relaxation begins (denoted by arrows) were obtained. For example, points 2 and 4 were obtained in con-
ditions of constant force and 7 and 8 in conditions of constant deformation rate. The relaxation curves ¢'(«)
merge in the envelope (6) obtained for relaxation following from extension at constant deformation rate (see
[1] and points 6 in Fig. 2b). Thus, the envelopes for these two types of extension are the same.

Note that the dependences ¢'(«) obtained for extension at constant force (the unfilled symbols in Fig.
2a) lie to the left of the envelope (as is also the case for the dependences for extension at constant deformation
rate in [1]).

Dependences ep(a) = I'(dIne/d7) for extension with different ¢y are shown in Fig. 3. The experimental
dependences e(7) and a(r) (see Fig. 1) were used to construct ep(a); in this case, I' = dlne/dr.. The de-
pendences ep(a) converge with increase in «. It should be emphasized that here, as for ¢ (a), the envelope
(see the filled symbols) is the same as that obtained for extension with constant deformation rate I'. The pro-
cedure for obtaining the envelope in any conditions of extension is given in [1], together with experimental re~
sults for the envelope in the case of extension with I" = const.

At this point, the theoretical and experimental results may be compared. The calculations were made for
the constants determined in [1], with the following values: viscosity 7 ~ 1.1-10° Pa- sec; relaxation time 6 =
2 - 103 sec; ratio of the retardation time to the relaxation time s = 0.85. The continuous curves in the figures
correspond to the case g = 0 and the dashed curves to the case g = 1.72- 107 5, No dashed curves appear in
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most of the figures because the two variants considered did not differ in the corresponding regions.

The theoretical dependences of the total deformation & and elastic recoil @ on the time 7 are calcu-
lated from Egs. (5), (6), and (12). For ¢y > 10 and g < 10, the theoretical curves are little different from the
corresponding solution of the problem for a Newtonian liquid in Eq. (14) with viscosity ns, although in the
present case gigantic elastic deformations accumulate (see Fig. 4). Note that the theoretical curves of £(1)
and a(7) for g =0 turn downward after rising sharply; increase in ¢y is associated with downturn at smaller
values of &. These downturns are not shown in Fig. 1, since, e.g., when g4 = 21.3, the downturn in the curves
of e(7) occurs at ¢ ~ 400 (see Fig. 4). When g = 0 the curves of ¢(7) and a(1) increase without limit.

The theoretical curves of the extension ¢f(«) shown in Fig. 2a follow from Ed. (1), where T is obtained
from Egs. (5) and (6) taking account of Egs. (4) and (12). Note that ¢'(«) does not depend on g (for any 8).
The analytic expression for the envelope is obtained from the expression for ¢ in Eq. (1) when I' =0, with )
replaced by ¢ in Eq. (12).

The values of €p (Fig. 3) in extension are calculated from Eq. (13). The analytic expression for the en-
velope is obtained from Edq. (13) with I' = 0. Note that, when g = 0, ep increases without limit with rise in o3
when g = 0, it has a maximum. It was not possible to confirm the existence of a maximum on the curves of
ep experimentally, because of the difficulty of obtaining large values of . Such a maximum was obtained in
[5] for low-density polyethylene. '

It is also interesting to compare the theoretical curves for the total deformation £(), the elastic de-
formation A(7), and the elastic recoil a(7) shown in Fig. 4 for g, = 21.3. At small r, ¢ = A, i.e., the sam~
ple medium deforms as a solid nonlinear Voigt body. Note that, in the region where A =~ g, the elastic recoil
o is considerably less than €, The theoretical curves of £(7), A(T), and a(7) for 8 = 0 turn downward at large
7. The downturn on the theoretical curves of £(T) for 8 = 0 shown in Fig. 4 were not experimentally investi-
gated, This is because it is very difficult to achieve values of € ~ 10% experimentally, Curves of &(r) with a
downturn after a sharp rise were observed in [6] for crystallizing polyisobutylene, but at viscosities several
orders of magnitude higher than were used in the present work.

NOTATION

A and o, two measures of the longitudinal elastic deformation; I' and ®, dimensionless and dimensional
deformation rates; v and t, dimensionless and dimensional time; 9, relaxation time; s, ratio of the retarda~
tion time to the relaxation time (0 < s < 1); 7, initial (Newtonian viscosity); g, dimensionless coefficient
characterizing the flexibility of the macromolecular chains (0 < 8 < 1); ¢ and ¢', dimensionless and dimen~
sional stress in the cross section of the extended sample; F, tensile force; p, and p, cross-sectional area of
sample at the onset of deformation (1 = 0) and after deformation for time r; I, length of sample at time 7; I,
and g¢, length of sample and stress in it at v = 0; I, length to which a segment of the extended cylindrical
sample of length 7 tends after the removal of the stress as v — »; &, total longitudinal deformation.
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